Untuksatu fungsi tidak mungkin ada sekaligus asimtot datar dan asimtot miring MA1114 KALKULUS I 6 Contoh Tentukan semua asimtot dari Jawab : i Asimtot tegak : x = 2, karena dan ii Asimtot datar : 2 4 2 lim 2 2 x x x x Maka asimtot datar tidak ada 2 4 2 2 x x x x f 2 4 2 lim 2 2 x x x x 1 lim 2 4 2 lim lim 2 2 2 1 2 4 2 2 2 x x x x x x x x x x
Kalkulus Contoh Mencari Asimtot fx=x^2+2x-3/x^2+4x-5 Langkah 1Tentukan di mana pernyataan tidak 2Karena ketika dari kiri dan ketika dari kanan, maka adalah asimtot 3Mempertimbangkan fungsi rasional di mana merupakan derajat dari pembilangnya dan merupakan derajat dari Jika , maka sumbu-x, , adalah asimtot Jika , maka asimtot datarnya adalah garis .3. Jika , maka tidak ada asimtot datar ada sebuah asimstot miring.Langkah 5Karena , asimtot datarnya adalah garis di mana dan .Langkah 6Tidak ada asimtot miring karena pangkat dari pembilangnya lebih kecil dari atau sama dengan pangkat dari Ada Asimtot MiringLangkah 7Ini adalah himpunan semua Tegak Asimtot Datar Tidak Ada Asimtot Miring
Karenaketika dari kiri dan ketika dari kanan, maka adalah asimtot tegak. Step 3. Karena ketika dari kiri dan ketika dari kanan, maka adalah asimtot tegak. Step 4. maka asimtot datarnya adalah garis . 3. Jika , maka tidak ada asimtot datar (ada sebuah asimstot miring). Step 6. Temukan dan . Step 7. Karena , sumbu x, , adalah asimtot datar.
Lukisgrafik y = √3 cos x0 + sin x0 dalam interval. 0 ≤ x ≤ 360 , dengan langkah-langkah sebagai berikut : a. Mengubah menjadi bentuk k cos (x - a)0. b. Menentukan koordinat titik balik maksimum dan. minimum. c. Menentukan pembuat nol. d.
TrigonometriContoh. Soal-soal Populer. Trigonometri. Grafik y= (2x+1)/ (x-1) y = 2x + 1 x − 1 y = 2 x + 1 x - 1. Tentukan di mana pernyataan 2x+1 x −1 2 x + 1 x - 1 tidak terdefinisi. x = 1 x = 1. Mempertimbangkan fungsi rasional R(x) = axn bxm R ( x) = a x n b x m di mana n n merupakan derajat dari pembilangnya dan m m merupakan derajat.